
How to Develop a RoboCupRescue Agent

for RoboCupRescue Simulation System version 0
1st edition

written by Takeshi Morimoto
edited by RoboCupRescue Technical Committee

mailing list: r-resc@isi.edu
web page: http://robomec.cs.kobe-u.ac.jp/robocup-rescue

CONTENTS i

Contents

1 Introduction 1

2 RoboCupRescue Simulation System 1
2.1 Structure . 1
2.2 Initialization and Progress . 1
2.3 Disaster Space . 2

3 RoboCupRescue Agent 4
3.1 Definition . 4
3.2 Protocol of Communication with the Kernel . 5

3.2.1 RCRSS Protocol . 5
3.2.2 LongUDP . 7

3.3 Process Flow . 7
3.4 Initialization . 8
3.5 World Modeling . 10
3.6 Action . 10

3.6.1 Move . 10
3.6.2 Rescue . 11
3.6.3 Carry of the Injured . 12
3.6.4 Extinguishing a Fire . 12
3.6.5 Clearing a Blockade . 12
3.6.6 Doing Nothing . 13

3.7 Inter-agent Communication . 13

4 How to Use the RCRSS 14

References 15

Appendix 16

A YabAPI — API to Develop an RCR Agent 16
A.1 Communication with the kernel . 16
A.2 World Modeling . 17
A.3 Description of Intelligence . 18

A.3.1 RCR agent Skeleton . 18
A.3.2 Route Planning . 19
A.3.3 Set Operation . 19

LIST OF FIGURES ii

List of Figures

1 Structure of the RCRSS . 1
2 Class hierarchy of objects in the disaster space . 2
3 Disaster space . 3
4 Building object . 3
5 Road object . 3
6 Node object . 4
7 Humanoid object . 4
8 Block of the RCRSS protocol . 5
9 RCRSS protocol packet . 5
10 IDs element . 6
11 String element . 6
12 Object element . 6
13 Objects element . 6
14 LongUDP header format . 7
15 RCRSS Protocol Stack . 7
16 Initializing Process . 8
17 Perception and action at each cycle . 8
18 Inter-agent communication . 8
19 AK CONNECT body . 9
20 KA CONNECT OK body . 9
21 KA CONNECT ERROR body . 9
22 AK ACKNOWLEDGE body . 9
23 KA SENSE body . 10
24 Visual range . 10
25 AK MOVE body . 10
26 Automaton that accepts route plans . 11
27 AK RESCUE body . 12
28 AK LOAD body . 12
29 AK UNLOAD body . 12
30 AK EXTINGUISH body . 12
31 Nozzle element . 12
32 AK CLEAR body . 13
33 AK REST body . 13
34 AK SAY/AK TELL body . 13
35 KA HEAR body . 13
36 Telecommunication network . 13
37 YabAPI . 16

List of Tables

1 Properties of a Building object . 3
2 Properties of a Road object . 3
3 Properties of a Node object . 4
4 Properties of a Humanoid object . 4
5 Capabilities of RCR agents . 5
6 Header and its use . 5
7 Value of object types . 6
8 Value of property types . 6
9 Source and Destination of RCRSS protocol blocks . 8
10 Value of agent types . 8
11 Module’s handling commands . 13
12 Configuration files in the RUN directory . 14

1 INTRODUCTION 1

1 Introduction

This manual is written for computer science/engineering researchers and students to acquire sufficient
knowledge on how to develop a RoboCupRescue agent (RCR agent) without background knowledge on
RoboCupRescue[1].

In the RoboCupRescue simulation, rescue agents such as ambulance teams and fire brigades act in
large urban disasters. Soon after a large earthquake, buildings collapse, many civilians are buried in the
collapsed buildings, fires are spreading, and it becomes difficult for rescue teams to pass roads because
these are blocked by debris of buildings and something else. The objective of rescue agents is, coherently,
to minimize damage resulting from disasters.

The urban area called the disaster space is simulated by the RoboCupRescue Simulation System
(RCRSS). The RCRSS consists of several modules, and the kernel module manages the whole of the
RCRSS. An RCR agent also is one of modules, and communicates with the kernel through a network to
act in the disaster space. Necessary for developing an RCR agent is understanding of the RCRSS, the
disaster space, and the means by which an RCR agent communicates with the kernel.

This manual, at first, describes the RCRSS and the disaster space. Then it describes how an RCR
agent acts in the disaster space by communicating with the kernel. Additionally, it shows how to use
the RCRSS. The appendix contains an explanation of how to develop an RCR agent using the YabAPI,
a bare essential API to develop an RCR agent in JAVA. The reader will be able to develop an original
RCR agent soon, using YabAPI.

In this manual, the RCRSS means the RCRSS version 0.xx unless otherwise noted.

2 RoboCupRescue Simulation System

2.1 Structure

The RCRSS is a real-time distributed simulation system that is built of several modules connected
through a network (Figure 1). Each module can run on different computers as an independent program,
so the computational load of the simulation can be distributed to several computers. Each disaster
phenomenon such as collapse of buildings and fire spread is simulated by a dedicated sub-simulator
of each disaster. Ambulance teams and fire brigades act as several independent RCR agents. The
geographical information system (GIS) provides initial condition of the disaster space, and the viewer
visualizes conditions of the disaster space. The kernel manages communications among the modules and
the simulation.

Kernel ViewerSub-simulators

RCR agents

GIS

Figure 1: Structure of the RCRSS

2.2 Initialization and Progress

Before starting a simulation, the kernel integrates all modules into the RCRSS as follows.

1. The kernel connects to the GIS, and the GIS provides the kernel with initial condition of the disaster
space.

2. Sub-simulators and the viewer connect to the kernel, and the kernel sends them the initial condition.
3. RCR agents connect to the kernel with their agent type. The kernel assigns each RCR agent to a

rescue team and civilians etc. in the disaster space, and sends initial condition within each agent’s
cognition.

2 ROBOCUPRESCUE SIMULATION SYSTEM 2

When all rescue teams and civilians in the disaster space have been assigned to RCR agents, the kernel
finishes the integration and the initialization of the RCRSS. Then, the simulation starts. All sub-
simulators and the viewer have to be connected to the kernel before all assignment of an RCR agent have
been finished.

The simulation proceeds by repeating the following cycle. At the first cycle of the simulation, steps
1 and 2 are skipped.

1. The kernel sends individual vision information to each RCR agent.
2. Each RCR agent submits an action command to the kernel individually.
3. The kernel sends action commands of RCR agents to all sub-simulators.
4. Sub-simulators submit updated states of the disaster space to the kernel.
5. The kernel integrates the received states, and sends it to the viewer.
6. The kernel advances the simulation clock of the disaster space.

One cycle in the simulation corresponds to one minute in the disaster space. The kernel waits half a
second for command/state submissions at steps 2 and 4, so it takes one second to simulate one cycle. It
occasionally takes a few seconds according to the scale of simulation and machine specs. All RCR agents
must decide an action within half a second.

The modules of the RCRSS work as follows at the beginning of the simulation.

1st cycle: A collapse sub-simulator simulates building collapse, and a fire sub-simulator starts sim-
ulating fire spread.
2nd cycle: A blockade sub-simulator simulates road blockade based on the result of the collapse
simulator, and a misc (stands for miscellaneous) sub-simulator starts simulating humans who are
buried and injured.
3rd cycle: RCR agents start acting.

2.3 Disaster Space

The kernel models the disaster space as a collection of objects such as buildings, roads, and humans
(Figure 2). Each object has properties such as its position and shape, and is identified by a unique ID .
The data type of a property is either a 32-bit signed integer or an integer array. Figure 2 illustrates
objects and properties necessary and sufficient for developing RCR agents. For more information, refer
to the manual of the RCRSS[2]. Immovable objects are located at the position designated by their

MovingObject

Humanoid Building

PointObject

MotionlessObject Edge

RealObject

Object

VirtualObject World

Road River

Vertex

Node RriverNode

abstract class

concrete class

AmbulanceCenter

Refuge

Car

AmbulanceTeam

FireBrigade

PoliceForce

Civilian

FireStation

PoliceOffice

Figure 2: Class hierarchy of objects in the disaster space

2 ROBOCUPRESCUE SIMULATION SYSTEM 3

geographical properties, and all objects are linked by their topological properties (Figure 3). A Road
object models a road as a rectangle area (Table 2, Figure 5). A Node object models an entrance of a
building or an end-point of a Road object (Table 3, Figure 6). The Humanoid object models a rescue
team or a civilian family (Table 4, Figure 7).

Road

Node

Building
Humanoid

(a) All objects are linked by
their topological properties

(b) View of a disaster space

Figure 3: Disaster space

Table 1: Properties of a Building object

Property Type or [Unit] Comment

x, y [mm] The x-y coordinate of the representative point
entrances ID1, · · · , IDn, 0 The connected nodes and roads.
floors [floor] The number of floors
buildingAreaGround [mm2] The area of the ground floor (1st floor)
buildingAreaTotal [mm2] The total area summing up all floors
fieryness The state that specifies how much it is burning

0 Unburned
Burning time rate

1 Burning 0.00 ∼ 0.33
2 0.33 ∼ 0.67
3 0.67 ∼ 1.00

Burned rate
5 Put out 0.0 ∼ 0.2
6 0.2 ∼ 0.7
7 0.7 ∼ 1.0

buildingCode The code of a construction method
Code Construction method Fire transmission rate

0 Wooden 1.8
1 Steel frame 1.8
2 Reinforced concrete 1.0

Building
entrances

Figure 4: Building object

head tail

Road

w
id

th

length

Figure 5: Road object

Table 2: Properties of a Road object

Property Type or [Unit] Comment

head, tail ID The end-point. It must be a node or a building
length, width [mm] The length from the head to the tail, and the width
linesToHead/Tail [line] The number of traffic lanes for cars toward the head/tail
block [mm] The width of a blocked part through which cars cannot pass
repairCost [team·cycle] The cost required for clearing the block

3 ROBOCUPRESCUE AGENT 4

Table 3: Properties of a Node object

Property Type or [Unit] Comment

x, y [mm] The x-y coordinate
edges ID1, · · · , IDn, 0 The connected roads and buildings

Road

Building

Node

edges

Figure 6: Node object

Road

tail

headpositionExtra

Humanoid
position

Figure 7: Humanoid object

Table 4: Properties of a Humanoid object

Property Type or [Unit] Comment

position ID An object that the humanoid is on. When the humanoid is
loaded by an ambulance, this is set to the ambulance.

positionExtra [mm] The offset length from the position: a length from the head
when the humanoid is on a road, otherwise it is zero

hp [health point] The health point. The humanoid dies when this becomes
zero

damage [health point] The damage point by which the hp dwindles every cycle.
This becomes zero immediately after the humanoid arrives
at a refuge

buriedness [team·cycle] The cost required to rescue the humanoid. When this is
greater than zero, the humanoid cannot act.

Every object has a representative point, and the distance between two objects is calculated from
their representative points. A representative point of a Building and a Node object is a point plotted
by the x and y properties. A Road object’s is a midpoint between its head and tail in this regard a
fraction is rounded down. If a Humanoid object is on a Building, Node, or AmbulanceTeam object, the
representative point is the same as that of the object under the Humanoid object. If a Humanoid object
is on a Road object, the representative point is a point positionExtra [mm] away from the head of the
Road object.

3 RoboCupRescue Agent

3.1 Definition

An RCR agent controls act of an object in the disaster space. The object is called a controlled object, and
there are seven classes for it: the Civilian, AmbulanceTeam, FireBrigade, PoliceForce, AmbulanceCenter,
FireStation, and PoliceOffice. An RCR agent controlling act of a Civilian object is called a civilian agent,
an RCR agent controlling act of an AmbulanceTeam object is called an ambulance team agent, and so on.
Additionally, the ambulance team, fire brigade, and police force agent are collectively called a platoon
agent, and the ambulance center, fire station, police office agent are also called a center agent. The
platoon and center agent is called a rescue agent.

Act of an object is processed as repeating cognition of the surrounding circumstances and decision
of an act at each cycle. An RCR agent recognizes the surrounding circumstances based upon vision
information received from the kernel, decides an act, and submits the act to the kernel. Moreover, an
RCR agent communicates with other RCR agents asynchronously (i.e. independently of cycles).

An RCR agent has different capabilities for cognition and act according to its type (Table5). An RCR
agent gets vision information by the sense capability and auditory information by the hear capability,
and acts by the move, rescue, load, unload, extinguish, and clear capabilities, and utters natural voice by
say capability and speak via telecommunication by tell capability.

3 ROBOCUPRESCUE AGENT 5

Table 5: Capabilities of RCR agents

Type Capabilities
Civilian Sense, Hear, Say, Move
Ambulance Team Sense, Hear, Say, Tell, Move, Rescue, Load, Unload
Fire Brigade Sense, Hear, Say, Tell, Move, Extinguish
Police Force Sense, Hear, Say, Tell, Move, Clear
Ambulance Center Sense, Hear, Say, Tell
Fire Station Sense, Hear, Say, Tell
Police Office Sense, Hear, Say, Tell

3.2 Protocol of Communication with the Kernel

3.2.1 RCRSS Protocol

An RCR agent communicates with the kernel through a network using the
RCRSS protocol. A data unit for the RCRSS protocol is called a block which
consists of a header, body length, and body field (Figure 8), and a packet of the
RCRSS protocol consists of zero or more blocks and a HEADER NULL (0x00)
as a terminator (Figure 9). The format of the body field depends upon the
header. The body length field is set the byte size of the body.

0 31
header

body length
body

...

Figure 8: Block of
the RCRSS protocol

block1 block2 · · · blockn HEADER NULL

Figure 9: RCRSS protocol packet

Table 6 shows headers related to RCR agents. An RCRSS protocol block having some header H is
called an H block, and a body of an H block is called an H body for short. Moreover, a block issued to
submit the will to act such as an AK MOVE and an AK REST block is called an action command. A
block for communication such as an AK SAY block is called a communication command.

Table 6: Header and its use
Value Header Use

To the kernel:
0x10 AK CONNECT To request for the connection to the kernel
0x11 AK ACKNOWLEDGE To acknowledge for the KA CONNECT OK
0x81 AK MOVE To submit the will to move to another position
0x88 AK RESCUE To submit the will to rescue an humanoid
0x82 AK LOAD To submit the will to load an humanoid
0x83 AK UNLOAD To submit the will to unload an humanoid
0x86 AK EXTINGUISH To submit the will to extinguish a fire
0x89 AK CLEAR To submit the will to clear a blockade
0x80 AK REST To submit the will to do nothing
0x84 AK SAY To submit the will to say something
0x85 AK TELL To submit the will to tell something

From the kernel:
0x50 KA CONNECT OK To inform of the success of the connection
0x51 KA CONNECT ERROR To inform of the failure of the connection
0x52 KA SENSE To send vision information
0x53 KA HEAR To send auditory information

The body field consists of 32-bit integers such as a time and an ID, strings, and objects serialized into
binary data. Body field formats will be defined in §3.4. Here we describe the data types and structures
of the elements constructing a body field.

3 ROBOCUPRESCUE AGENT 6

int An int element is a 32-bit signed integer. It represents x coordinate, an ID for the position property,
etc.

IDs An IDs element consists of zero or more IDs and 0 as a terminator (Figure 10). It represents the
entrances, edges, etc.

0 31
ID1

ID2

...
IDn

0

Figure 10: IDs
element

0 31
size

string
...

Figure 11: String
element

0 31
type
id

properties
...

Figure 12:
Object element

0 31
object1
object2

...
objectn

TYPE NULL

Figure 13:
Objects element

String A String element consists of a byte size of the string and an ASCII character string (Figure11).
The string is aligned to a multiple of 4 bytes, but the byte size is set the original size. This element is
used for inter-agent communications etc.

Object An Object element represents an object in the disaster space, and consists of the type, ID, and
properties of the object (Figure 12). The type is either one listed in Table 7, and the properties consist
of zero or more properties < type, value > and a PROPERTY NULL (0x00) as a terminator:

{< type1, value1 >, · · · , < typen, valuen >, PROPERTY NULL}.

The type of a property is either one listed in Table 8. A value for properties assigned to 0x00 ∼ 0x7F is
an int element, and for properties assigned to 0xC0 ∼ 0xFF is an IDs element. For other property types,
refer to the manual of the RCRSS[2]. An Object element is used for the kernel to send vision information
to an RCR agent.

Table 7: Value of object types

Type Value
Civilian 0xE8
Fire brigade 0xE9
Ambulance team 0xEA
Police force 0xEB
Road 0xA8
Node 0xC8
Building 0xB0
Refuge 0xB8
Fire station 0xB9
Ambulance center 0xBA
Police office 0xBB
River 0xA9
RiverNode 0xC9

Table 8: Value of property types

Property Value
head 0x0C
tail 0x0D
length 0x18
width 0x26
linesToHead 0x29
linesToTail 0x2A
block 0x16
repairCost 0x27
x 0x03
y 0x04
edges 0xF2
entrances 0xEB
floors 0x0E
buildingAreaGround 0x33
buildingAreaTotal 0x34
fieryness 0x10
buildingCode 0x32
position 0x06
positionExtra 0x07
hp 0x0A
damage 0x0B
buriedness 0x17

3 ROBOCUPRESCUE AGENT 7

Objects An Objects element consists of zero or more Object elements and a terminator TYPE NULL
(0x00) (Figure13). The kernel sends information of objects in the disaster space to an RCR agent by the
Objects element: however, it does not necessarily contain all objects and properties; that is, the kernel
sends only differences from those that it sent last time.

3.2.2 LongUDP

The RCRSS protocol assumes that the LongUDP. The LongUDP provides a procedure for application
programs to send large size data to other programs with a simple protocol mechanism using UDP (User
Datagram Protocol) as the underlying protocol. In the mechanism, the sender program divides data into
several UDP packets with adding a LongUDP header (Figure14), and the receiver program rebuilds data
from the UDP packets sent from the same sender and assigned the same LongUDP ID.

0 15 16 31
0x008 id

number total

0x008 · · · The magic number
id · · · An ID of the LongUDP packet
number · · · An ordinal number of the UDP packet in the total

(0 ≤ number < total)
total · · · A number of total UDP packets building the LongUDP packet

Figure 14: LongUDP header format

Finally, the relation among the RCRSS protocol, LongUDP, and UDP is summarized in Figure 15.

block

id:

nblock 1 block 2

id:
number:0

id:
number:1

id:
number:2

id:
number:total-1

.....

header

RCRSS protocol

LongUDP

UDP

HEADER_NULL

ID

ID ID ID ID

Figure 15: RCRSS Protocol Stack

3.3 Process Flow

Before starting simulation, every RCR agent has to be assigned to its controlling object by communicating
with the kernel (Figure16). Each RCR agent, at first, requests the kernel for the connection by submitting
an AK CONNECT block to the listening port 6000 of the host where the kernel is running. Then, the
kernel replies to the RCR agent with a KA CONNECT OK block when the connection is established, or
sends a KA CONNECT ERROR to tell failure. In either case the kernel sends the block from another
port than the listening port, and the RCR agent communicates with the kernel through the sources of the
AK CONNECT and the KA CONNECT OK block after this step (Table 9). The KA CONNECT OK
block contains the geographical information of the whole of the disaster space and vision information,
and the RCR agent initializes itself based upon the information. Finally, the RCR agent acknowledges
the KA CONNECT OK block with an AK ACKNOWLEDGE block.

At every cycle in the simulation, each RCR agent receives a KA SENSE block as its own vision
information from the kernel, and then submits an action command to the kernel (Figure 17). An RCR
agent, moreover, can communicate with other RCR agents by communication commands asynchronously
of the cycle. The kernel sends KA HEAR blocks as auditory information to receiving RCR agents soon
after reception of a communication command (Figure 18).

3 ROBOCUPRESCUE AGENT 8

Agent Kernel
AK_CONNECT

AK_CONNECT_OK

AK_CONNECT_ERROR

AK_ACKNOWLEDGE

request connect

exit

success

failure

initialize

acknowledge start simulating

Figure 16: Initializing Process

Table 9: Source and Destination of RCRSS protocol blocks

Packet Source Destination
AK CONNECT Arbitrary∗a Listening Port of the Kernel∗b

KA CONNECT OK Arbitrary Source of AKConn∗c

KA CONNECT ERROR Arbitrary Source of AKConn
AK ACKNOWLEDGE Source of AKConn Source of KAConnOk∗d

KA SENSE Arbitrary Source of AKConn
action Source of AKConn Source of KAConnOk

KA HEAR Arbitrary Source of AKConn
communication Source of AKConn Source of KAConnOk
*a A source of AKConn may be shared with more than one RCR agents.
*b It is specified as port 6000 of the host where the kernel is running.
*c AKConn stands for the AK CONNECT block.
*d KAConnOk stands for the KA CONNECT OK block.

Agent Kernel
KA_SENSE

action command

model the disaster space send sensory information

decide an action send sub-simulators the command

Figure 17: Perception and action at each cycle

Agent A Kernel

KA_HEAR

communication command
utter a message

send the message

Agent B,C,...,Z
hear the message

Figure 18: Inter-agent communication

3.4 Initialization

Here we describe the body of RCRSS protocol blocks used to initialize an RCR agent.

AK CONNECT body

An AK CONNECT block is used for an RCR agent to request
for the connection to the kernel. Its body consists of three int
elements: temporaryId, version, and agentType (Figure 19). The
temporaryId field is used to identify the RCR agent submitting
an AK CONNECT block from the socket from which other RCR
agents may also submit a block. Although the version must be 0
in the RCRSS manual[2], informally, the version may be 1. In this
case, a map field of a KA CONNECT OK is not sent in order for
many RCR agents to establish the connection as fast as possible.

Table 10: Value of agent types

Type Value
Civilian 1
Fire brigade 2
Fire station 4
Ambulance team 8
Ambulance center 16
Police force 32
Police office 64

3 ROBOCUPRESCUE AGENT 9

0 31
int temporaryId An arbitrary ID
int version This must be 0
int agentType The type of the agent. This is either one listed in Table 10

Figure 19: AK CONNECT body

KA CONNECT OK body

A KA CONNECT OK block is sent from the kernel, and the RCR agent can get information of its
controlling object and the whole of the disaster space. Its body consists of temporaryId, id, self, and
map (Figure 20).

0 31
int temporaryId The same value as that of the AK CONNECT block
int id The ID of the self
Object self The object which the RCR agent controls

...
Objects map The information about the whole of the disaster space

...

Figure 20: KA CONNECT OK body

KA CONNECT ERROR body

A KA CONNECT ERROR block is sent from the kernel in order to tell failure of the connection. Its
body consists of the temporaryId and the reason (Figure 21). There are two reasons mainly:

• “unknown version” means that the given version by the AK CONNECT block is invalid, and
• “no more agent” means that all controlled objects whose type is the same as the given agentType

by the AK CONNECT block have already been assigned to other RCR agents.

0 31
int temporaryId The same value as the AK CONNECT block’s
String reason The reason why the connection failed

...

Figure 21: KA CONNECT ERROR body

AK ACKNOWLEDGE body

An AK ACKNOWLEDGE block is used for the RCR agent to acknowledge the KA CONNECT OK
block. Its body consists of the ID of its controlling object (Figure 22).

0 31
int id The ID of its controlling object

Figure 22: AK ACKNOWLEDGE body

3 ROBOCUPRESCUE AGENT 10

3.5 World Modeling

An RCR agent has to construct a model that represents the disaster space in its interior based upon vision
information contained in a KA SENSE block at each cycle. A KA SENSE body consists of id, time, self,
and map (Figure23). The time may be regarded as the number of cycles from the start of the simulation.
The self and the map contain only differences from the last cycle. The map contains information of
objects within a radius of 10 m, and all fires. Note that a distance between two objects is calculated from
their representative points (See §2.3). For instance, in Figure 24, an RCR agent controlling the self can
get information of the Node1 and the Road2, but cannot get information of the Road1 where the self is
(!) and the Building1. In addition, even if the self passed a route last cycle, the RCR agent may not be
able to get information of objects near the passed route. That is to say, an RCR agent can get only a
snapshot at the beginning of each cycle.

0 31
int id The ID of the self
int time Current time in the disaster space
Object self The object which the RCR agent... controls
Objects map The vision information

...

Figure 23: KA SENSE body

Building1

10m

Road1

Node1

self

Road2

: representative point

Figure 24: Visual range

3.6 Action

After receiving a KA SENSE block, an RCR agent submits an action command as the will of its con-
trolling object at each cycle. Although an RCR agent may submit two or more action commands at
one cycle, the kernel adopts only the last one. As mentioned in §2.2, an RCR agent needs to submit an
action command before taking half second after receiving a KA SENSE block, or the kernel regards that
the RCR agent dose not want to act at the cycle. Moreover, delayed action commands are ignored. Note
that a buried humanoid, whose buriedness is greater than zero, cannot act.

3.6.1 Move

A humanoid can move in the disaster space — a platoon can drive a car and a civilian family can walk
— by submitting an AK MOVE block (Figure25). The routePlan must be a statement acceptable by an
automaton shown in Figure26, which consists of the current position as the origin and a series of objects
reaching the destination. When the humanoid is loaded by an ambulance, the origin is the ambulance’s
position. Every object that comprises a routePlan must be a MotionlessObject.

0 31
int selfId Its controlling object’s ID
IDs routePlan The route plan along which the agent want to move

...

Figure 25: AK MOVE body

A humanoid can move only if it specifies the route plan, because the traffic sub-simulator has to
simulate the move of all humanoids as they requested as possible in a limit time. But a humanoid can
pass neither a blockade nor a traffic jam, so a humanoid agent has to specify a route plan avoiding them.
Here we describe blockade, traffic jam, and the maximum speed of moving objects. For more information,
refer to the specification for the traffic sub-simulator contained as the README.txt file in [3].

3 ROBOCUPRESCUE AGENT 11

R

B B

N
n

r

b
b

n

d o

Initial state Current position
R Road
N Node
Bo Building

Input Meaning
r Adjacent road ID
n Adjacent node ID
b Adjacent building ID

Figure 26: Automaton that accepts route plans

Blockade A blockade is assumed to be located at the midpoint of a Road object. On a road where
there are more than one traffic lane, the lanes are blocked from outside to inside. When a humanoid is
on a road, the definition of a blockade is as follows, where every variable is a property of the road except
for a positionExtra property of the humanoid.

lineWidth :=
width

linesToHead + linesToTail

blockedLines :=
⌊

block

2 · lineWidth
+ 0.5

⌋

passableLinesToHead := max(0, linesToHead − blockedLines)
passableLinesToTail := max(0, linesToTail − blockedLines)

passableLinesToHead = 0, positionExtra >
length

2
→ isBlockedToHead

passableLinesToTail = 0, positionExtra <
length

2
→ isBlockedToTail

If the isBlockedToHead/Tail is true, the humanoid cannot pass the road toward its head/tail. If false
while there is a blockade on the road, it means that several inside lanes are not blocked or at least the
humanoid has already bypassed the blockade.

Traffic Jam A traffic jam may occur on roads where many humanoids concentrate, because each
humanoid moves keeping a safe distance to its forward moving object. The minimum safe distance to a
forward platoon from a humanoid is 8 m, and to a forward civilian from a civilian is 1 m. Cars for rescue
are, however, prioritized in the traffic, so that platoons can ignore civilians even if they are on the way,
assuming that civilians are attentive to cars and give way to them. If there is a stopped humanoid on
the way, another humanoid who wants pass the way changes to a lane of the same direction, and then
can pass.

Maximum speed The maximum speed of a platoon is 20 [km/h], so a platoon can move 333 m in one
cycle at most. The civilian’s maximum speed is 3 [km/h]. Actually, a humanoid seldom moves at the
maximum speed through one cycle, because a humanoid has to pass cross-points, change lanes, avoid
blockades, etc.

3.6.2 Rescue

An ambulance team can progressively rescue buried humanoids under collapsed buildings by submitting
an AK RESCUE block (Figure 27). Rescuing a humanoid by an ambulance team in a cycle reduces the
buriedness of the humanoid by 1 [team·cycle]. If more ambulance teams work on rescuing a humanoid,
the humanoid can be rescued in less cycles. The target humanoid must be at the same position as the
ambulance team. Note, however, that because a road and its end-point nodes are considered as the same
position, the ambulance team can rescue a buried humanoid midst on a road from an end-point node of
the road.

3 ROBOCUPRESCUE AGENT 12

0 31
int selfId Its controlling object ID
int targetId The humanoid ID the self rescues

Figure 27: AK RESCUE body

3.6.3 Carry of the Injured

An ambulance team can load a humanoid to its car by submitting an AK LOAD block (Figure 28),
and can unload a humanoid from its car by submitting AK UNLOAD block (Figure 29). The target
humanoid of an AK LOAD block must be at the same position as the ambulance team similarly to a
rescue command, and moreover, a buriedness of the humanoid must be zero. Note that an ambulance
team can neither load nor unload a moving humanoid even if the position of the humanoid does not
change by moving, because AK MOVE blocks are dealt with before AK LOAD/AK UNLOAD blocks.
So an injured humanoid must not move in order to be carried to a refuge. After unloading, the injured
humanoid will stand initially at the same position as the ambulance team. If an ambulance team agent
submits an AK UNLOAD block before loading, the ambulance team does nothing at the cycle.

0 31
int selfId Its controlling object ID
int targetId The humanoid ID, which

the self loads

Figure 28: AK LOAD body

0 31
int selfId Its controlling object ID

Figure 29: AK UNLOAD body

3.6.4 Extinguishing a Fire

A fire brigade can extinguish a fire by submitting an AK EXTINGUISH block (Figure30) which contains
fire hose’s nozzle elements (Figure 31), and a fire brigade may use more than one fire hoses for different
fires simultaneously. The direction of a nozzle element should be designated as zero degree for Y-axis
positive direction, and up to 1295999 in the unit of second in the counterclockwise direction. Although
the effect of extinguishing is not defined explicitly, it may not be difficult for even a few fire brigades to
extinguish an early fire. On the contrary, it is difficult for even many to extinguish a late and big fire.

0 31
int selfId
Nozzle nzl1

...

...
Nozzle nzln

...
int 0

Figure 30:
AK EXTINGUISH body

0 31
int targetId The ID of a building for which the nozzle headed
int direction The direction from the nozzle to the target
int x The x coordinate of the nozzle
int y The y coordinate of the nozzle
int quantity The water quantity discharged from the nozzle in a cycle.

A unit is 0.001 [m3]

Figure 31: Nozzle element

3.6.5 Clearing a Blockade

A police force can progressively clear debris on a road by submitting an AK CLEAR block (Figure 32).
Clearing debris on a road by a police force in a cycle reduces a block of the road by 1/repairCost %, and
a repairCost of the road by 1 [team·cycle]. If more police forces work on clearing debris on a road, the
road can become passable in less cycles. The target road must be at the same position as the police force
similarly to a rescue command.

3 ROBOCUPRESCUE AGENT 13

0 31
int selfId Its controlling object ID
int targetId The road ID, which the self clears

Figure 32: AK CLEAR body

3.6.6 Doing Nothing

When a controlled object does nothing at a cycle, the RCR agent may submit a AK REST block (Fig-
ure 33). The block is used, for example, to cancel previous commands submitted at the cycle.

0 31
int selfId Its controlling object ID

Figure 33: AK REST body

3.7 Inter-agent Communication

An RCR agent can communicate with other RCR agents; an RCR agent can utter natural voice by submit-
ting AK SAY block, and a platoon and a center, furthermore, can use telecommunication by submitting
AK TELL block (Figure 34); and an RCR agent can hear these messages by receiving KA HEAR blocks
(Figure 35). Natural voice can be heard by humanoids within a radius of 30 m, and telecommunication
can be heard by platoons and the center of the same type as the speaker. Furthermore, telecommunica-
tion by a center is transferred to other type centers, too (Figure 36). In each case, auditory information
is sent soon after a communication command is submitted.

0 31
int selfId Its controlling object ID
String message The message self utters

Figure 34: AK SAY/AK TELL body

0 31
int selfId Its controlling object ID
int senderId The sender object ID
String message The message uttered by... the sender

Figure 35: KA HEAR body

Ambulance center Fire station Police office

Ambulance team Fire brigade Police force

Figure 36: Telecommunication network

For reference, here we show relations between a command and a module handling the command in
the RCRSS version 0.40 (Table 11).

Table 11: Module’s handling commands

Module Handling commands
Kernel AK SAY, AK TELL
Traffic sub-simulator AK MOVE, AK LOAD, AK UNLOAD
Fire sub-simulator AK EXTINGUISH
Misc sub-simulator∗a AK RESCUE, AK CLEAR
*a The misc sub-simulator simulates the hp, damage, buriedness, etc. properties.

4 HOW TO USE THE RCRSS 14

4 How to Use the RCRSS

The RCRSS basic package[4] contains most of the necessaries for developing RCR agents, and the RCRSS
can be installed and started by only a few commands (See the READ ME.txt file in the package). In
the RUN directory of the package, there are shell scripts and configuration files for the RCRSS. The
all.sh file executes all modules except for rescue agent modules on a single PC, and the simulation can
be started by connecting rescue agents to the kernel. The YabAI.sh file executes sample rescue agents.
For the simulation of large area, it is necessary to execute the RCRSS with at least three PCs, each of
which is responsible to:

• Rescue agents,
• Fire sub-simulator and civilian agents, and
• Kernel and other modules.

We have confirmed the simulation of the tenth part of the Kobe city map by using three PCs equipped with
a Pentium III 930 MHz processor and 256 MB of main memory. In order to distribute a computational
load of the simulation to several PCs, it is necessary to specify the name of a host where the kernel runs
as an argument of each shell script executing a module, and to make modules run on several PCs. For
example, the following commands execute the GIS and the kernel on PC1, and the sample civilian agents
on PC2.

PC1 % cd RUN/
PC1 % ./0gis.sh &
PC1 % ./1kernel.sh

PC2 % cd RUN/
PC2 % ./samplecivilian.sh PC1

In addition, the RCRSS requires time to initialize itself in order to send a large amount of information
of the disaster space.

The log of the simulation is stored into the rescue.log file which can be used to replay the simulation
by executing the logviewer.sh file. However, actions of RCR agents are not stored. Viewers and debuggers
such as [5, 6] store the actions, and therefore enables to debug RCR agents and sub-simulators.

Table 12 shows configuration files in the RUN directory. The config.txt file configures the behavior of
the RCRSS, and can be edited by a text editor. Detailed information of the config.txt is written as com-
ment in the parameters.hxx file in the kernel directory. The gisini.txt file configures how many controlled
objects, ignition points, and refuges exist in the disaster space, and where these are. An ignition point
is a building ignited by the fire sub-simulator at the first cycle. The gisini.txt file is made by the initial
position setting tool available from [7]. The galpolydata.dat and the shindopolydata.dat files are used to
simulate building collapse and road blockade, respectively, and are made by the earthquake distribution
data creating tool[8]. The building.bin, road.bin, and node.bin files are geographic information data of
buildings, roads, and nodes, respectively, in the disaster space, and available from [7]. The RCRSS can
simulate various areas by switching geographic information data. For the present, the data of Kobe city
which had been damaged seriously at the Hanshin-Awaji earthquake at 1995 in Japan, and some virtual
city data, etc. are available. The package version 0.40 contains the one tenth part of the Kobe city data.

Table 12: Configuration files in the RUN directory

File Object
config.txt Behavior of the RCRSS
gisini.txt All controlled objects, refuges, ignited buildings
galpolydata.dat Distribution of ground acceleration
shindopolydata.dat Distribution of seismic intensity
building.bin Position, shape, etc. of buildings
road.bin Position, shape, etc. of roads
node.bin Position etc. of nodes

REFERENCES 15

References

[1] RoboCupRescue Official Site,
http://robomec.cs.kobe-u.ac.jp/robocup-rescue/.

[2] Tomoichi Takahashi, RoboCupRescue Simulator Manual, 2000,
http://kiyosu.isc.chubu.ac.jp/robocup/Rescue/.

[3] Takeshi Morimoto, Traffic Simulator for RoboCupRescue Simulation System, 2002,
http://ne.cs.uec.ac.jp/~morimoto/rescue/traffic/.

[4] Tetsuhiko Koto, RoboCupRescue Simulation System Basic Package, 2002,
http://ne.cs.uec.ac.jp/~koto/rescue/.

[5] Takeshi Morimoto, Viewer for RoboCupRescue Simulation System, 2002,
http://ne.cs.uec.ac.jp/~morimoto/rescue/viewer/.

[6] Takeshi Morimoto, Debugger for RoboCupRescue Simulation System, 2002,
http://ne.cs.uec.ac.jp/~morimoto/rescue/debugger/.

[7] Michinori Hatayama, GIS Component & Geographic Infomation Data for RoboCupRescue Simulation
System, 2002,
http://www.cs.dis.titech.ac.jp/~hatayama/rcr/rcr_gis.html.

[8] Tomoichi Takahashi, Earthquake Distribution Data Creating Tool, 2002,
http://kiyosu.isc.chubu.ac.jp/robocup/Rescue/2002memo/GIS/tool.tar.gz.

[9] Kosuke Shinoda, RoboCupRescue Civilian Agent, 2002,
http://www.carc.aist.go.jp/~kshinoda/R_Civilian/.

A YABAPI — API TO DEVELOP AN RCR AGENT 16

Appendix

A YabAPI — API to Develop an RCR Agent

The YabAPI is a bare essential API to develop an RCR agent in JAVA, which consists of four packages
(Figure 37):

• the yab.io package provides functions for communication between an RCR agent and the kernel,
• the yab.io.object package provides classes of objects in the disaster space,
• the yab.agent.object package provides useful classes of objects in the disaster space for RCR

agent developers. They wrap the yab.io.object package’s classes, and
• the yab.agent package provides the skeletons of RCR agents and utilities for concisely describing

their intelligence.

AbstractAmbulanceTeamAgent

AbstractFireBrigadeAgent

AbstractPoliceForceAgent

AbstractAmbulanceCenterAgent

AbstractFireStationAgent

AbstractPoliceOfficeAgent

AbstractCivilianAgent

CenterAgent

HumanoidAgent Agent

PlatoonAgent

Router
Route

Util
DisasterSpace

Condition

<<utility>><<utility>>

Property

yab.agent.objectyab.agent

RCRObject

LongUDPSocket

RCRSSProtocolSocket

RCRSSProtocol
KaConnectOk

KaConnectError

KaSense

KaHear

ObjectElement

PropertyElement

NozzleElement

<<utility>>

yab.io

yab.io.object

BaseRCRObject

abstract class

concrete class

Figure 37: YabAPI

This appendix shows sample programs that use these packages. For more information, refer to the
YabAPI’s documentation in the yabapi/doc directory.

For C++ programmers, there also is a library Agent Development Kit (ADK) by Michael Bowling,
which is available from http://www-2.cs.cmu.edu/~mhb/research/rescue/.

A.1 Communication with the kernel

The following program uses the yab.io package for an RCR agent to connect to the kernel and then
control actions of its assigned object.

import java.net.*;
import yab.io.*;

class RCRAgent {

A YABAPI — API TO DEVELOP AN RCR AGENT 17

RCRSSProtocolSocket socket;

RCRAgent(int agentType, InetAddress kernelAddress, int kernelPort) {
socket = new RCRSSProtocolSocket(kernelAddress, kernelPort);
socket.akConnect(TEMPORARY_ID, VERSION, agentType);
Object data = socket.receive();
if (data instanceof KaConnectError)

quit();
KaConnectOk ok = (KaConnectOk)data;
initialize(worldModel, ok);
socket.akAcknowledge(ok.selfId);

}

void control() {
while (true) {

Object data = socket.receive();
if (data instanceof KaSense) {

update(worldModel, (KaSense)data);
act();

} else
hear((KaHear)data);

}
}

void act() {
int[] routePlan = ...;
socket.akMove(self.id, routePlan);

}
}

A.2 World Modeling

The following program uses the yab.io.object and yab.io packages for an RCR agent to construct and
update its interior world model. The yab.io package defines the same classes as Figure 2 in §2.3 except
that the Object class is named BaseRCRObject.

import java.util.*;
import yab.io.object.*;
import yab.io.ObjectElement;

class DisasterSpace {
HashMap idObjMap = new HashMap();
BaseRealObject self;
int time;

DisasterSpace(int selfId, ObjectElement[] objs) {
update(objs, INITIAL_TIME);
self = get(selfId);

}

void add(BaseRealObject obj) { idObjMap.put(new Integer(obj.id), obj); }

BaseRealObject get(int id) {
return (BaseRealObject)idObjMap.get(new Integer(id));

}

A YABAPI — API TO DEVELOP AN RCR AGENT 18

void update(ObjectElement[] objs, int time) {
this.time = time;
for (int i = 0; i < objs.length; i ++)

update(objs[i]);
}

void update(ObjectElement oe) {
BaseRCRObject obj = get(oe.id);
if (obj == null) {

obj = BaseRCRObject.produce(oe.type, oe.id);
if (obj instanceof BaseRealObject)

add((BaseRealObject)obj);
}
obj.setProperty(oe.properties);

}
}

A.3 Description of Intelligence

The yab.agent and yab.agent.object packages are used to concisely describe intelligence of RCR
agents by providing:

• the skeletons of RCR agents,
• a method for getting a route plan, and
• the operators for a set of objects.

A.3.1 RCR agent Skeleton

The yab.agent.AbstractXxxAgent class, a skeleton of an RCR agent, is used to develop RCR agents.
The developers have to only describe action of each cycle in act method and reaction to auditory
information in hear method. For center agents, however, it is not necessary to implement act method.

import java.net.*;
import yab.agent.*;
import yab.agent.object.*;

class FireBrigadeAgent extends AbstractFireBrigadeAgent {
FireBrigadeAgent(InetAddress address, int port) { super(address, port); }

protected void act() throws ActionCommandException {
// action of each cycle

}

protected void hear(RealObject sender, String message) {
// reaction to auditory information

}
}

ActionCommandException is thrown by methods that submit action commands such as move and
extinguish methods, and is used to break out from act method. Hereby, action can be described like
a rule set as the following.

protected void act() throws ActionCommandException {
extinguishNearFire();
moveToFire();

A YABAPI — API TO DEVELOP AN RCR AGENT 19

}

protected void extinguishNearFire() throws ActionCommandException {
if (there_are_fires_near_here)

extinguish(one_of_near_fires);
}

protected void moveToFire() throws ActionCommandException {
if (there_are_fires)

move(route_to_one_of_fires);
}

A.3.2 Route Planning

Router.get method takes as parameters an origin, destinations, and a function estimating moving cost,
and returns the minimum cost route reaching one of the destinations from the origin.

protected void move(Collection destinations) throws ActionCommandException {
Route routePlan = Router.get(self.position(), destinations, cost_function);
move(routePlan.toIDs());

}

The move method of the humanoid agent skeleton takes only destinations parameter, and returns a
route by estimating moving cost based upon passability of roads. For details about routing, refer to the
documentation of Router class.

A.3.3 Set Operation

The yab.agent.object.Property and yab.agent.Condition classes are used to operate on a set of
objects.

Property fieryness = Property.get("Building", "fieryness");
Condition isBurning = fieryness.gte(1).and(fieryness.lte(3));
Collection fires = isBurning.extract(world.buildings);

Property entrance = Property.get("Building", "entrance");
Collection entrancesOfFires = entrance.collect(fires);

