
Handbook of ¬<><∪∪ in English Tetsuhiko Koto
for Version 0.99 http://ne.cs.uec.ac.jp/~koto/notavacc/ koto@takopen.cs.uec.ac.jp

Overall Structure

A input for the ¬<><∪∪ compiler compiler is converted
into a sequence of tokens by the process same as Java (JLS
3.2), but the noterminal symbols of ¬<><∪∪ are defined by
the following table.

Noterminal Description
IDENTIFIER not starting with $

keywords starting with $

separators/operators the strings used in the following EBNF,
||, &&, --, !!, **, ++, and ??

CHAR Java character literal
STRING Java string literal

The grammar of the input for the ¬<><∪∪ is drawn by
EBNF. The notation is as the following table.

Meta-notation Description
Italic or italic nonterminals

ITALIC terminals (symbol)
Underlined terminals (literal)
expr1 | expr2 alternative

expr∗ Kleene star
expropt optional

The sequence of tokens should be structured by the follow-
ing grammar. The goal symbol is Root .

Root ::= ParserDeclaration
ConstructorScopeopt

definition∗

ParserDeclaration ::= $protectedopt $parser JavaName ;

JavaName ::= IDENTIFIER (. IDENTIFIER)∗

ConstructorScope ::= $protected $constructor ;

definition ::= SubtokenDefinition
| TokenDefinition
| AliasDefinition
| TypeDefinition

¬<><∪∪ outputs a single Java source file and it defines a
top level class that contains many nested types. The name of
the top level class is given by the PackageDeclaration. If it is
described as $protected, the generated class has the default
scope. Otherwise, it is public. The ConstructorScope makes
the scope of the constructor of the generated top level class
the default scope (not the protected scope). The definitions
gives the details of the generated top level class.

Lexical Analyzer

SubtokenDefinition ::=
$subtoken IDENTIFIER = tokenExpression ;

TokenDefinition ::=
$whiteopt $token

IDENTIFIER (= tokenExpression)opt ;

The generated top level class contains a interface and a
default implementaion for lexical analysis. A TokenDefini-
tion defines a terminal. A terminal matches the character
sequences that matches the tokenExpression, or matches no
sequence if tokenExpression is omited (used only for user-
defined lexical analyzers). The default implementation re-
peats cutting out, from the character sequence inputed into
the implementaion, the longest mached string as a token,
which is an instance of a terminal. A STRING in expressions
of non-$abstract syntax definitions also defines a terminal.
It matches the represented string.

If a terminal is $white, the instance of it is a white token.
White tokens are ignorable for parsing and useful for white
spaces and comments.

A SubtokenDefinition gives a name the tokenExpression to
be used in tokenExpressions.

tokenExpression is defined by the following table.

Priority tokenExpression Matched Strings
6 expr1 | expr2 alternative one matches

5 expr1 & expr2 both matches
expr1 - expr2 former matches, latter not

4 expr1 expr2 ... connection of matches
3 ! expr not match
2 expr * zero or more repeats

expr + one or more repeats
expr ? one or zero repeats

1 [expr] one or zero repeats
(expr) expr matches
CHAR the character

CHAR .. CHAR a character between
STRING the string

IDENTIFIER (sub)terminal maches

Syntax Analyzer

AliasDefinition ::= IDENTIFIER = expression ;

TypeDefinition ::= modifiers IDENTIFIER supertypesopt

{ expression }
modifiers ::= ($protected | $private)opt $abstractopt

| $parsable
| $protected-parsable $protectedopt

supertypes ::= -> TypeName (& TypeName)∗

TypeName ::= IDENTIFIER

InlineExpression ::= TypeDefinition

The generated top level class contains zero or more syntax
analyzers, which parses the sequence of the tokens given by
a lexical analyzer. The grammar is described by an extended
EBNF. A TypeDefinition or an AliasDefinition describes a
production. The IDENTIFIER describes the name of the
defined nonterminal, and the expression gives the right-
hand side of the production.

TypeDefinitions also appear in expressions as InlineExpres-
sions for convenience.

The expression is defined by the following table.

P. expression Matched Token Sequence
5 expr1 | expr2 alternative one matches

4 expr1 expr2 ... connection of matches
3 expr * zero or more repeats

expr + one or more repeats
expr ? one or zero repeats

expr / TypeName expr matches
(used to control types of labels)

2 IDENTIFIER : expr expr matches
(labeled expression)

$label : expr expr matches
(labeled expression)

1 [expr] one or zero repeats
(expr) expr matches

$embed (expr) expr matches
(replaces aliases by its expression)

IDENTIFIER terminal or nonterminal matches
STRING the terminal

InlineExpression the nonterminal matches

The syntax analyzer builds a concrete syntax tree
(CST) first (See Example). A token (an instance of a termi-
nal) is a leaf of the tree and an instance of a nonterminal is a
node of the tree. The nodes has labeled children. A labeled
expression formed as label:expression means the instances
of the terminals and noterminals in the expression are labeled
by the label. An instance can be labeled by multiple labels

1

http://ne.cs.uec.ac.jp/~koto/notavacc/
mailto:koto@takopen.cs.uec.ac.jp
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#95504
http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#95504
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/index.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/index.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.LexicalAnalyzer.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Default.LexicalAnalyzer.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Default.LexicalAnalyzer.html

and a label can label multiple instances. The same label can
also appear twice or more in an expression lexically.

And then, the analyzer builds an abstract syntax tree
(AST) by removing some nodes from the CST. All the node
that is an instance of the nonterminal defined by AliasDefi-
nition (Alias) is removed. The children of a removed node
become the children of the parent node of the removed node.
If there is the child that is labeled by $label, the analyzer
replaces the $label with the labels that label the removed
node. If no children labeled by $label, all the children be-
come labeled by the labels the removed node has.

The analyzer outputs the objects representing the AST. A
token is represented by an instance of the nested interface
Token. A node is represented by an instance of the nested
interface whose name is the same as the nonterminal an in-
stance of which in the CST the node was. The nested in-
terface has the method whose name is the same as a label,
that has no arguments, and that returns the children labeled
by the label. If the label labels at most one child, the static
type of the result is the most specific common type of
the children the label may label. If the label may label more
than one children, the result is a java.util.List, or will be a
java.util.List parameterized by the most specific common
type for Java 1.5.

The supertypes specifies the supertype(s) of the nested in-
terface. A TypeName should be a name of the nonterminal
defined by TypeDefinition. If no supertypes are specified, the
nested interface is a subtype of the nested interface Node.
Token is also a subtype of Node.

If a nonterminal is defined as $parsable, the generated
top level class has public methods with various arguments
to parse the grammer whose goal symbol is the nontermi-
nal. If a nonterminal is defined as $protected-parsable,
the generated top level class has similar methods but they
are protected.

If a nonterminal is defined as $protected or $private, the
nested interface whose name is the same as the nontermina
is protected or private. Otherwise, it is public.

If a nonterminal is defined as $abstract, the nonterminal
generates a nested interface but should not appear in syntax
trees.

Example

$parser parser.Parser;

$protected $constructor;

$token INTEGER = ’0’..’9’+;

$white $token WHITE_SPACES = (’ ’ | ’\t’)+ ;

$parsable Example { expr:expr }

$abstract Expr { }

expr = term | Add | Sub ;

Add -> Expr { op1:expr "+" op2:term }

Sub -> Expr { op1:expr "-" op2:term }

term = prim

| Mul -> Expr { op1:term "*" op2:prim }

| Div -> Expr { op1:term "/" op2:prim } ;

prim = "(" $label:expr ")" | $label:Num ;

Num -> Expr { value:INTEGER }

The output from the above source is the following.

package parser;

public class Parser {

Parser() { ... }

public static abstract class LexicalAnalyzer { ... }

protected LexicalAnalyzer

createLexicalAnalyzer(...) { ... }

public static interface Node {

List getChildNodes(); ... }

public static interface Token extends Node {

String getImage();

int getLine(); int getColumn(); ... }

public Example parseExample(File file) { ... }

public Example parseExample(LexicalAnalyzer la) {

... }

...

public static interface Example extends Node {

Expr expr(); ... }

public static Expr extends Node { }

public interface Add extends Expr {

Expr op1(); Expr op2(); ... }

...

}

The details are described in the javadoc comment of the
generated file.

The CST for 1 ∗ (2 + 3) is

Example

expr

expr

term

Mul

✦✦✦✦
op1

term

prim

Num

value☛
✡

✟
✠1

☛
✡

✟
✠*

❛❛❛❛
op2

prim

paren

✦✦✦✦
☛
✡

✟
✠(

$label
expr

Add

✦✦✦✦
op1

expr

term

prim

Num

value☛
✡

✟
✠2

☛
✡

✟
✠+

❛❛❛❛
op2

term

prim

Num

value☛
✡

✟
✠3

❛❛❛❛
☛
✡

✟
✠)

The AST generated by removing the broken line boxes is

Example

expr

Mul

✧
✧

✧✧
op1

Num

value☛
✡

✟
✠1

☛
✡

✟
✠*






☛
✡

✟
✠(

�������

op2

Add

✦✦✦✦
op1

Num

value☛
✡

✟
✠2

☛
✡

✟
✠+

❛❛❛❛
op2

Num

value☛
✡

✟
✠3



☛
✡

✟
✠)

2

http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Token.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Type.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Type.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Type.html#label()
http://java.sun.com/j2se/1.4.1/docs/api/java/util/List.html
http://jcp.org/en/jsr/detail?id=14
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.Node.html
http://ne.cs.uec.ac.jp/~koto/notavacc/docs/output/TopLevelClass.html#parseType(java.io.File)

